徐明朝

又一个WordPress站点

怎样设置代理服务器技术丨7020铝合金在3.5%NaCl溶液中的点蚀行为-中铝协

技术丨7020铝合金在3.5%NaCl溶液中的点蚀行为-中铝协
--点击上方蓝字《中铝协》,关注协会动态,中国铝业协会交流平台--
Al-Zn-Mg系合金具有强度高、焊接性能优良、耐腐蚀性能优越且挤压性能良好等优点,作为结构材料被广泛应用于轨道交通等领域。在使用过程中这种合金常常会发生局部点蚀胡灵灵,从而降低结构件的可靠性和寿命。因此深入研究Al-Zn-Mg合金的点蚀行为,探明其腐蚀机理具有重要意义。
本文通过浸泡实验和循环阳极极化曲线研究了7020铝合金在3.5%(质量分数)NaCl溶液中不同时间的点蚀行为,通过扫描电子显微镜(SEM)观察了点蚀浸泡前后的表面形貌,用扫描透射电镜(STEM)观察了试样内部微观组织,探讨了其点蚀机理。
实验方法
1实验材料
实验材料为10mm厚的7020-T5铝合金挤压型材,其化学成分(质量分数,%)为:Si 0.084,Fe 0.31,Cu 0.17,Mn 0.31,Mg 1.27,Zn 4.45,Cr 0.22,Zr 0.13,Al余量。
2溶液浸泡实验
浸泡实验样品尺寸为15mmx15mmx10mm,经除油、清洗干燥后,在3.5%NaCl溶液中连续浸泡,溶液温度通过恒温水浴控制在(20±1)℃,分别浸泡不同时间后取出。
采用MX 3000金相显微镜观察了点蚀后试样横截面形貌,同时用FEI-Quanta 200型SEM对试样的初始形貌与浸泡后的表面形貌进行观察,并对一些典型第二相进行能谱(EDS,Genesis60s)分析。
3扫描透射电镜
STEM样品先经机械研磨减薄至厚度约为80μm,再冲成直径为3mm的小圆片,采用MTP-1A型双喷电解减薄仪对圆片试样进行减薄、穿孔。
双喷电解液为30%HNO3+70%CH3OH(体积分数),使用液氮将温度控制在-20℃以下,章吉仁电流为50-70mA李乐衡 ,电压为10-20V。
采用FEI Tecnai G2 F20型STEM(加速电压为200kV)在高角环形暗场像(HAADF)模式下观察试样中的微观组织,并用EDS分析第二相化学成分。
4循环阳极极化曲线测试
循环极化曲线能确定合金的各个电化学参数,从而预测合金点蚀倾向。其特征参数为自腐蚀电位Ecorr、击穿电位Epit、保护电位Erp以及自腐蚀电流密度Icorr。
在本实验中,将浸泡不同时间的样品进行循环阳极极化曲线测试。先将样品取出后与Cu线相连,留一面作为工作面ca1557,其工作面积为10mm×10mm,并用无水乙醇超声波清洗后干燥,非工作面用松香石蜡密封后进行电化学测试。
用IM6EX型电化学综合测试仪,根据ASTM G59-97(2003)标准采用动电位扫描法测定极化曲线闭合环。在3.5%NaCl溶液中,采用三电极体系,7020铝合金样品为工作电极,Pt片为辅助电极,饱和甘汞电极为参比电极,测定开路电位后,先进行阴极极化,再进行阳极极化。扫描范围为Eop-1.5V~+1V~-1V,扫描速率为2mV/s。
结果与讨论
1初始状态微观组织

图1 7020铝合金的SEM像和第二相EDS分析结果
图1为7020铝合金初始状态的SEM像和第二相EDS分析结果僵尸神话。可观察到两种形貌的析出相,一种是不规则形状的亮色第二相粒子,大部分沿挤压方向呈条带状分布,尺寸约为1-5μm,如图1a中所示。
对典型粒子进行EDS分析可见,其中主要包含Al、Fe、Mn和Si,如图1b所示,推测为含FeMnSi的初生相。该区域还能观察到很多尺寸更小(亚微米级)的弥散亮色第二相粒子,由于尺寸太小,无法进行EDS分析,因此采用STEM进一步观察和分析,典型结果如图2所示。

图2 7020铝合金的HADDF像及弥散相EDS分析结果
从图2a中可观察到,晶粒内部分布着较多尺寸约100-300nm的亮色第二相。对典型粒子进行EDS分析,结果如图2b所示,可见除了Al基体外,第二相中含有Mn、Cr、Zn及Cu,推测为含Mn、Cr的弥散相。
因此推测7020铝合金中存在的主要第二相可能为尺寸较大的含FeSiMn的初生相,这种相为α-AlFeSiMn相;以及尺寸较小的含MnCr弥散相。
2点蚀动力学分析
采用断面金相法测量了试样浸泡不同时间后截面的最大腐蚀深度,见图3。

图3 7020铝合金浸泡不同时间后截面最大腐蚀深度
可知,浸泡168h后的最大腐蚀深度为5μm,且仅能观察到细小的点蚀坑,如图3a所示;浸泡到504h后,点蚀坑深度达到46μm,如图3b所示;浸泡840h后,可观察到点蚀坑边缘出现了沿晶腐蚀形貌;腐蚀1176h后,仍能观察到类似特征,且最大腐蚀深度持续增大,如图3c和d所示。

图4 7020铝合金浸泡1176 h后的截面SEM像
图4为7020铝合金浸泡1176h后的截面SEM像唐佳良。可以明显的观察到,腐蚀1176h后合金呈现典型的网状结构,表现为沿晶腐蚀,如图4a所示。在高倍照片中可见腐蚀裂纹细长,尖端无明显腐蚀产物,如图4b所示温贞菱,说明在腐蚀后期点蚀尖端是沿晶界发生了择优腐蚀。

图5 以最大点蚀深度d表征的腐蚀动力学图
图5为最大点蚀深度随浸泡时间的变化曲线。在0-1176 h的浸泡中,最大点蚀深度随时间的变化呈S型曲线,336h之前点蚀深度增长缓慢,至840h点蚀深度迅速增加,而后速率降低,整体呈缓慢增长-快速增长-保持稳定的过程。Sigmoidal(Boltzman)曲线可较好的反映这种趋势,其函数关系式如下:

其中,d为随时间t变化的最大腐蚀深度,d0和dmax分别是最初和最大的腐蚀深度,t0是腐蚀深度中位数所对应的时间值,dt是与初始状态有关的常数。
图5中的拟合曲线R2=0.99781,拟合后的函数关系式如下:

但是如果完全按S曲线拟合,当时间趋向无穷大时不二咲千寻,最大点蚀深度趋向于常数,这与实际不符。7020铝合金型材有着较强的沿挤压方向的晶粒变形与取向,且在晶界有强化相析出并产生无沉淀带(如图2),因而能够形成沿挤压方向的晶界的阳极优先溶解通道。
因此在点蚀后期进入晶间腐蚀阶段,且达到一定的腐蚀深度时,腐蚀便开始优先沿平行于表面的阳极溶解通道发展,此时沿深度方向的腐蚀速率减慢。
3点蚀形貌与微观组织
为了更好地研究点蚀过程,采用SEM观察了试样浸泡不同时间后的表面形貌,见图6。

图6 7020铝合金浸泡不同时间后的SEM像
可观察到7020铝合金在3.5%NaCl溶液中的腐蚀形式以点蚀及点蚀的发展为主,随着时间的增加腐蚀程度逐渐加深,蚀点向四周扩散,腐蚀产物不断增厚且覆盖不均匀。
试样浸泡168h后,表面呈条纹状,并沿挤压方向分布;还可观察到少量蚀孔,其中分布着许多亮色第二相颗粒,且与基体之间存在黑色的沟壑,如图6a所示。
浸泡504h后,表面蚀孔变多且呈条带状,腐蚀区域和未腐蚀区域交替分布,部分腐蚀产物已经开裂,如图6b所示。
浸泡840h后,点蚀面积进一步增大,且部分蚀孔已经显著扩大并相互连接,且缝隙较宽,如图6c所示。
浸泡1176h后,可观察到许多大块开裂的腐蚀产物堆积在表面,如图6d所示。
正常情况下Al在水溶液中即会氧化,形成电阻很大的Al2O3H2O氧化膜;但在氯化物溶液中,由于Cl-的存在,在活性较高的局部位置(如晶界和第二相等处),进行的不是成膜反应而是阳极溶解反应:

发生阳极溶解反应后怎样设置代理服务器,钝化膜开始局部破裂,形成蚀孔,并发生如下反应:

因此裸露的Al表面快速电离,蚀孔内部Al3+浓度逐渐增加,Cl-不断向孔内迁移导致孔内Cl-浓度升高。同时,蚀孔内H+浓度升高、pH值降低,蚀孔内溶液酸化,水解产生的H+和孔内Cl-促使蚀孔中的Al继续溶解,发生自催化反应,腐蚀不断发展,点蚀迅速扩展。
随着点蚀程度增加,腐蚀产物Al(OH)3在蚀孔处堆积,这阻碍了蚀孔内外的介质交换,形成了闭塞电池。
也就是说,蚀孔内部溶解的金属离子不易向外扩散,溶解氧不易向内扩散,造成蚀孔内部积累过多的正电荷,结果有更多的Cl-进入维持电中性;蚀孔内部Al的氯化物水解产生更多的H+和Cl-,促使溶解进一步加快,蚀孔面积不断变大,堆积的腐蚀产物也不断变厚,并逐渐覆盖蚀孔,腐蚀速率减慢。

图7 7020铝合金浸泡不同时间后的SEM像和EDS分析结果
图7为7020铝合金浸泡不同时间后的SEM像和EDS分析结果。由图可观察到,样品浸泡不同时间后均可观察到尺寸不一的蚀孔,其中第二相稳定存在,到腐蚀后期第二相密度大大减少。
根据EDS分析结果可知,α-AlFeSiMn相周围的蚀坑尺寸较大。对样品中的第二相成分含量进行统计,结果见表1。

表1 7020铝合金在不同浸泡时间后第二相的化学成分
可见随着浸泡时间延长,Al,Fe和Mn的含量逐渐减小,因此推测α-AlFeSiMn初生相在点蚀的过程中常常充当阴极,且发生了去合金化,其中Fe和Mn被溶解,周围基体发生腐蚀。
而腐蚀过程中只要阴极相存在,其周围的基体溶解就不会停止,只有阴极相从基体中掉落后,反应才会结束。腐蚀后期第二相的密度减少,反应速率也进一步减慢。
由于含MnCr弥散相尺寸太小,无法进行EDS分析田因齐,但能观察到随浸泡时间的延长基本未被腐蚀,周围的Al基体发生开裂形成蚀孔,一些蚀孔中未见含MnCr弥散相,可能是随着基体的腐蚀而发生了脱落。
4循环阳极极化曲线

图8 7020铝合金浸泡不同时间后的极化曲线

表2 7020铝合金浸泡不同时间后的极化曲线特征参数
图8为7020铝合金浸泡不同时间后的循环极化曲线,可观察到每条曲线都有一段稳态钝化区和一个滞后环,说明试样会在溶液中发生点蚀。表2为极化曲线所测得的各电化学腐蚀参数卢海清。一般Ecorr越正,合金的抗腐蚀性能越好。
铝合金耐点蚀能力还与表面钝化膜的完整和破损后的自修复能力有关,当电位高于Epit时,电流随电压升高开始快速增大,说明钝化膜发生了破裂,铝合金表面发生点蚀,因此Epit越大,铝合金的耐点蚀能力越强。而击穿电位与保护电位之差即|Epit-Erp|值越大,钝化膜破坏的越严重,蚀孔的发展趋势越大,腐蚀越严重。
由图8和表2的数据可知,随着腐蚀时间延长,Ecorr,Epit以及|Epit-Erp|均呈下降趋势,即耐蚀性能下降,然而浸泡到1176h时,Epit和|Epit-Erp|突然上升榊原恒一,可能是由于长时间表面附着的腐蚀产物沉积在破损的钝化膜表面,对合金有一定的保护作用。但电极电位仅能从热力学角度解释点蚀发展。
从动力学角度来说,腐蚀电流密度Icorr越大,腐蚀速率越快。因此,Icorr在样品浸泡至168h时有所增大,浸泡至840h时显著增大,而后少量下降,腐蚀速率先快后慢,因此到浸泡后期试样表面氧化膜破坏速度变慢91公分之外,点蚀敏感性减小。
结论
(1)7020铝合金点蚀的最大腐蚀深度随时间的延长逐渐加深,呈现S型变化,包含缓慢增长-快速增长-保持稳定的过程,腐蚀后期沿深度方向的腐蚀速率减慢。
(2)7020铝合金中α-AlFeSiMn相在浸泡过程中充当阴极,且发生了去合金化张榕蓉,周围的Al基体充当阳极而被腐蚀;含MnCr弥散相则伴随着Al基体的腐蚀而脱落。
(3)随着腐蚀时间的延长,7020铝合金自腐蚀电位、击穿电位以及击穿电位与保护电位之差均逐渐减小,耐蚀性能下降;而腐蚀电流密度逐渐增大,腐蚀速率逐渐加快。而到了腐蚀后期爱德华威布尔,表面附着的腐蚀产物能起到一定的保护作用。
来源:铝加工